
A CPU MODULE FOR A SPACECRAFT CONTROLLER WITH HIGH
THROUGHPUT SPACEWIRE INTERFACES

Session: Onboard Equipment & Software

Short Paper

Toru Sasaki, Minoru Nakamura, Tadashi Yoshimoto, Minoru Yoshida,

and Shoji Yoshikawa

Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1,
Tsukaguchi-Honmachi, Amagasaki, Hyogo, 661-8661, Japan

E-mail: Sasaki.Toru@eb.MitsubishiElectric.co.jp,

Nakamura.Minoru@ea.MitsubishiElectric.co.jp,

Yoshimoto.Tadashi@ap.MitsubishiElectric.co.jp,

Yoshida.Minoru@ea.MitsubishiElectric.co.jp,

Yoshikawa.Shoji@ap.MitsubishiElectric.co.jp

ABSTRACT
 We have developed a CPU module for a spacecraft controller with high throughput
SpaceWire interfaces. This CPU module is a main module of the spacecraft controller
which executes AOC(Attitude and Orbit Control) and DH(Data Handling) processing.
The amount of data from payload subsystems has been increasing in recent
spacecrafts, such as earth observing spacecrafts. With that in mind, we selected
SpaceWire for its high data transfer rate. To accelerate data transfer throughput
without requiring excessive CPU resources, we have developed a SpaceWire
controller and a DMA controller. We have made a functional model of the CPU
module and evaluated its performance for data transfer. This paper discusses the
architecture of the CPU module and the results of its evaluation.

1 INTRODUCTION
 To develop a spacecraft controller in a short time and at low cost, we have recognized
the importance of establishing a design standard. SpaceWire is becoming a standard
for networks of onboard satellites all over the world. In Japan, too, a spacecraft
controller equipped with SpaceWire has already been developed [1]. The flexibility
and high-throughput of SpaceWire makes it very attractive for the network in our
spacecraft controller. The first step in our program for adopting SpaceWire was
developing the CPU module for the spacecraft controller, which is designed for the
small and medium size satellites. This CPU module uses DMA to accelerate the data
transfer through the SpaceWire. Here, we introduce this spacecraft controller and its
CPU module, in particular.

2 SPACECRAFT CONTROLLER
 Fig. 1 shows a block diagram and picture of the spacecraft controller. The CPU
module’s main functions are AOC and DH. Sensors, such as thermistors, star sensors
and Fiber Optic Gyros (FOGs), are connected to the Sensor I/F module, which uses an
FPGA and ADC to gather digital and analog data from the sensors. The I/O module
interfaces with actuators such as reaction wheels. The Data Recorder module has an
FPGA and SDRAMs for storing data from pay-load subsystems and housekeeping
data. A soft-core CPU is embedded in each FPGA for controlling of synchronization
and interfaces between modules.

SRAM

PROM

EEP
ROM

SpaceWire I/F

Sensor I/F Module

Data Recorder
Module

I/O Module

CPU Module

CPU FPGA

Command &
HK-Telemetry(Sband)

Telemetry
(X-band)

SDRAM

FPGA

ADC

FPGA

…

…

 Internal bus

Sensors

Actuators

FPGA

Drivers

Soft
Core
CPU

SoftCore
CPU

Soft
Core
CPU

FIG.1. The block diagram and the picture of the spacecraft controller
The size is 310(W)×116(D)×236(H)mm and the weight is 5 kg

3 CPU MODULE
 Table 1 gives the specification of the CPU module and Fig. 2 shows the picture of the
CPU module. The CPU module is composed of HR5000 CPU, which is developed by
JAXA, memories and an Anti-Fuse FPGA. The CPU and the FPGA are connected
with PCI bus. Fig. 3 shows a function block diagram of the FPGA. The SpaceWire
Controller manages 2-channel SpaceWire interfaces which are supposed to be
connected to mission payloads. The DMA Controller has 4 channels for sending and 4
channels for receiving to handle the data transfer of SpaceWire and other peripherals.
The FPGA has also a PCI Bus Bridge Controller, a WatchDogTimer, a Timer, a GPIO
an Interrupt Controller and a Serial Interface Controller. The PCI Bus Bridge
Controller controls the PCI bus between HR5000 and the FPGA.

 We describe the specification of the DMA Controller, which has two special
functions to enhance the throughput of the SpaceWire. Firstly, this DMA Controller
has two sets of control registers, count registers, and destination or source address
registers in each channel. This design enables software to configure one set of
registers while the DMA controller is transferring data under the other configured set
of registers(double register mode). Therefore we can reduce the delay for DMA
restart. Secondly, the DMA Controller detects EOP(End of Packet) of SpaceWire
packet. The burst-length can be set 1, 2, 4 or 8 in word (4 bytes), but the length of the
SpaceWire packet may not be a multiple of the burst-length. This situation might
cause the DMA Controller to wait for all the data being filled in the burst length. To

prevent the DMA Controller from waiting, the DMA Controller can detect EOP and
can send the residues separately.

 To transfer data by using the DMA Controller, software sets a DMA count register
and a source or destination address register and selects the burst-length. Then the
DMA Controller begins DMA transfer once the software sets a start-bit of a DMA
control register. If we use the double register mode, we can set another registers and
keep the channel ready for the next DMA transfer while executing the former DMA
transfer. DMA transfer is executed until the detection of EOP or the expiration of a
DMA count register. Transfer completion is notified by an interrupt or a flag in the
DMA status register.

 We also developed software which works
on the CPU module and manages the
transfer of the data by using SpaceWire
Controller and DMA Controller. The
software uses an original operating
system(OS). The device drivers in the OS
handle the controllers in the FPGA.

4 EVALUATION
 Our evaluation of the CPU module was especially focused on the effect of the double
register mode. We compared the data transfer rate using the double register mode with
the rate using a single register(single register mode) and examined the effects of
varying the length of SpaceWire packets.

For this evaluation, a SpaceWire interface was connected to a loopback wiring. And
we made the CPU module to send data from the system memory and to receive the
same data through the loopback. We measured the time for the completion of
transferring data. The link speed of SpaceWire was set 10Mbps. The result is shown

FIG.3. FPGA function block diagram

FIG.2. The picture of the CPU module.
The two largest ICs in the CPU module
are an Anti-Fuse FPGA(upper) and
HR5000 CPU(lower).

Table 1. Specifications of the CPU module

CPU

HR5000

(core 100MHz bus 50MHz)

FPGA RTAX2000(Actel)

SpaceWire
Interface 2ch

System
Memory

Asynchronous
SRAM(2MB) with ECC

Power
Consumption 4.2W

in Fig. 4. We found that the transfer rate by the double register mode was enhanced up
to about 1.5 times faster. At the length of 384 bytes, the data transfer by the double
register mode was 7.01Mbps. The logical data transfer rate of the SpaceWire with
10Mbps link speed is estimated as about 8Mbps. Hence our controller is said to reach
about 88% of the maximum performance of SpaceWire with 10Mbps link speed.

5 DISCUSSION
 We can see a drop around the short-length
packet in Fig. 4. It indicates that the double
register mode does not increase the efficiency
so much when transferring short-length
packets. We suppose that the problem is in
software’s overhead in re-setting the DMA
registers. If the overhead is quite large, the
former DMA transfer will complete before
software starts up the next DMA transfer.
This situation reduces the performance of the
double register mode because the double
register mode needs a little more complicated
process in the completion and start of a DMA
than the single. We expect that we can
improve the overhead by optimizing the
software and get better efficiency of the
double register mode around shorter length
packets.

6 CONCLUSION
We have developed a CPU module with SpaceWire interfaces for a spacecraft
controller. The data through the SpaceWire is managed by a SpaceWire Controller
and a DMA controller in an FPGA. The DMA controller has two sets of registers for
configuration and detects the arrival of EOP to promote the throughput of the data
transfer. The measurement of data transfer showed that using the double register
mode enhanced the throughput by 50% at its best, compared to the single register
mode. And we found that we need the improvement of the software which handling
the double register mode to increase the efficiency of transferring short-length packets.
Moreover we will implement the RMAP protocol or the SpW-RT(Spacewire Real
Time) protocol in the CPU module. We plan to report the status of these work on the
next Conference.

7 REFERENCES
1. Tadayuki Takahashi, Takeshi Takashima, Seisuke Fukuda, Satoshi Kuboyama,

Masaharu Nomachi, Yasumasa Kasaba, Takayuki Tohma, Hiroki Hihara, Shuichi
Moriyama, Toru Tamura, “Space Cube 2 – An Onboard Computer Based on
SpaceCube Architecture”, International SpaceWire Conference 2007, Dandee, UK
Sep. 17th-19th, 2007.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

200 400 600 800 1000

FIG. 4. The ratio of the double to
single register mode in transfer rate
as a function of length of SpW
packet.

length of SpW packet[byte]

Double/Single

